In its nearly 30-year history, the space shuttle program has seen exhilarating highs and devastating lows. The fleet has taken astronauts on dozens of successful missions, resulting in immeasurable scientific gains. But this success has had a serious cost. In 1986, the Challenger exploded during launch. In 2003, the Columbia broke up during re-entry over Texas. Since the Columbia accident, the shuttles have been grounded pending redesigns to improve their safety. The 2005 shuttle Discovery was supposed to initiate the return to flight, but a large piece of insulating foam broke free from its external fuel tank, leaving scientists to solve the mystery and the program grounded once more until July 2006, when the Discovery and Atlantis both carried out successful missions.
The ET is made of aluminum and aluminum composite materials. It has two separate tanks inside, the forward tank for oxygen and the aft tank for hydrogen, separated by an intertank region. Each tank has baffles to dampen the motion of fluid inside. Fluid flows from each tank through a 17-inch (43 cm) diameter feed line out of the ET through an umbilical line into the shuttle's main engines. Through these lines, oxygen can flow at a maximum rate of 17,600 gallons/min (66,600 l/min) and hydrogen can flow at a maximum rate of 47,400 gallons/min (179,000 l/min).
Either one or both of the OMS engines can fire, depending upon the orbital maneuver. Each OMS engine can produce 6,000 lb (26,400 N) of thrust. The OMS engines together can accelerate the shuttle by 2 ft/s2 (0.6 m/s2). This acceleration can change the shuttle's velocity by as much as 1,000 ft/s (305 m/s). To place into orbit or to de-orbit takes about 100-500 ft/s (31-153 m/s) change in velocity. Orbital adjustments take about 2 ft/s (0.61 m/s) change in velocity. The engines can start and stop 1,000 times and have a total of 15 h burn time.
Now let's put these pieces together to lift off!
The orbiter consists of the following parts:
Because it is moving at about 17,000 mph (28,000 km/h), the orbiter hits air molecules and builds up heat from friction (approximately 3000 degrees F, or 1650 degrees C). The orbiter is covered with ceramic insulating materials designed to protect it from this heat. The materials include:
These materials are designed to absorb large quantities of heat without increasing their temperature very much. In other words, they have a high heat capacity. During re-entry, the aft steering jets help to keep the orbiter at its 40 degree attitude. The hot ionized gases of the atmosphere that surround the orbiter prevent radio communication with the ground for about 12 minutes (i.e., ionization blackout).
When re-entry is successful, the orbiter encounters the main air of the atmosphere and is able to fly like an airplane. The orbiter is designed from a lifting body design with swept back "delta" wings. With this design, the orbiter can generate lift with a small wing area. At this point, flight computers fly the orbiter. The orbiter makes a series of S-shaped, banking turns to slow its descent speed as it begins its final approach to the runway. The commander picks up a radio beacon from the runway (Tactical Air Navigation System) when the orbiter is about 140 miles (225 km) away from the landing site and 150,000 feet (45,700 m) high. At 25 miles (40 km) out, the shuttle's landing computers give up control to the commander. The commander flies the shuttle around an imaginary cylinder (18,000 feet or 5,500 m in diameter) to line the orbiter up with the runway and drop the altitude. During the final approach, the commander steepens the angle of descent to minus 20 degrees (almost seven times steeper than the descent of a commercial airliner).
After landing, the crew goes through the shutdown procedures to power down the spacecraft. This process takes about 20 minutes. During this time, the orbiter is cooling and noxious gases, which were made during the heat of re-entry, blow away. Once the orbiter is powered down, the crew exits the vehicle. Ground crews are on-hand to begin servicing the orbiter.
The shuttle's technology is constantly being updated. Next, we'll look at future improvements to the shuttle.
The crew compartment has three decks:
It must be able to do the following:
First, the bipod fitting is the forward point where the ET attaches to the underside of the orbiter. Engineers and technicians discovered that this point is especially susceptible to icing. In the past, ramps of foam insulation over this part prevented ice buildup; however, this insulation fell off frequently, thereby presenting a danger to the orbiter.
In the redesign, the insulation has been removed and the fitting now mounts across the top of a copper plate, which contains electric heaters. The heater can warm the fitting and prevent ice buildup.
Third, five liquid oxygen feedline bellows lie along the umbilicus that connects the liquid oxygen tank with the main engines and are attached to the liquid hydrogen tank. The bellows compensate for expansions and contractions that occur when the liquid hydrogen tank is filled and emptied. The bellows prevent stresses on the feedline. Previously, the foam insulation overlying the bellows was angled. This angle allowed water vapor to condense, run between the foam insulation, and freeze, thereby breaking the foam. To correct this problem, the foam skirt of this joint has been extended over the insulation below and squared off so that water cannot run between the foam.
To detect falling debris and possible damage to the shuttle, NASA has done the following:
Finally, engineers and technicians have installed 66 tiny accelerometers and 22 temperature sensors in the leading edge of both wings on the orbiter. The devices will detect the impact of any debris hitting the orbiter's wings.
Remember that the shuttle was to fly like a plane, more like a glider, when it landed. A working orbiter was built to test the aerodynamic design, but not to go into outer space. The orbiter was called the Enterprise after the "Star Trek" starship. The Enterprise flew numerous flight and landing tests, where it was launched from a Boeing 747 and glided to a landing at Edwards Air Force Base in California.
The space shuttle consists of the following major components:
- two solid rocket boosters (SRB) - critical for the launch
- external fuel tank (ET) - carries fuel for the launch
- orbiter - carries astronauts and payload
A typical shuttle mission is as follows:
- getting into orbit
- launch - the shuttle lifts off the launching pad
- ascent
- orbital maneuvering burn
- orbit - life in space
- re-entry
- landing
Launching the Space Shuttle
To lift the 4.5 million pound (2.05 million kg) shuttle from the pad to orbit (115 to 400 miles/185 to 643 km) above the Earth, the shuttle uses the following components:
- two solid rocket boosters (SRB)
- three main engines of the orbiter
- the external fuel tank (ET)
- orbital maneuvering system (OMS) on the orbiter
Let's look at these components closely.
Solid Rocket Boosters
The SRBs are solid rockets that provide most of the main force or thrust (71 percent) needed to lift the space shuttle off the launch pad. In addition, the SRBs support the entire weight of the space shuttle orbiter and fuel tank on the launch pad. Each SRB has the following parts:
The SRBs are solid rockets that provide most of the main force or thrust (71 percent) needed to lift the space shuttle off the launch pad. In addition, the SRBs support the entire weight of the space shuttle orbiter and fuel tank on the launch pad. Each SRB has the following parts:
- solid rocket motor - case, propellant, igniter, nozzle
- solid propellant
- fuel - atomized aluminum (16 percent)
- oxidizers - ammonium perchlorate (70 percent)
- catalyst - iron oxide powder (0.2 percent)
- binder - polybutadiene acrylic acid acrylonite (12 percent)
- curing agent - epoxy resin (2 percent)
- jointed structure
- synthetic rubber o-rings between joints
- flight instruments
- recovery systems
- parachutes (drogue, main)
- floatation devices
- signaling devices
- explosive charges for separating from the external tank
- thrust control systems
- self-destruct mechanism
· Because the SRBs are solid rocket engines, once they are ignited, they cannot be shut down. Therefore, they are the last component to light at launch.
The Trouble with O-rings
During the January 1986 launch of Challenger, the temperature was below zero. The cold shrank the rubber o-rings and they did not seal the joints properly. During ascent, hot gases escaped through one of the joints of the SRB. Like a blowtorch, the gases cut through the thin skin of the ET and ignited the liquid hydrogen fuel. Challenger broke up and the crew was lost. NASA re-designed the SRB joints, implemented new rules regarding launches in cold weather, and built a new system for the crew to escape from the shuttle during ascent.
|
Main Engines
The orbiter has three main engines located in the aft (back) fuselage (body of the spacecraft). Each engine is 14 feet (4.3 m) long, 7.5 feet (2. 3 m) in diameter at its widest point (the nozzle) and weighs about 6,700 lb (3039 kg).
The orbiter has three main engines located in the aft (back) fuselage (body of the spacecraft). Each engine is 14 feet (4.3 m) long, 7.5 feet (2. 3 m) in diameter at its widest point (the nozzle) and weighs about 6,700 lb (3039 kg).
Photo courtesy NASA One of the space shuttle's main engines |
Photo courtesy NASA |
The main engines provide the remainder of the thrust (29 percent) to lift the shuttle off the pad and into orbit.
The engines burn liquid hydrogen and liquid oxygen, which are stored in the external fuel tank (ET), at a ratio of 6:1. They draw liquid hydrogen and oxygen from the ET at an amazing rate, equivalent to emptying a family swimming pool every 10 seconds! The fuel is partially burned in a pre-chamber to produce high pressure, hot gases that drive the turbo-pumps (fuel pumps). The fuel is then fully burned in the main combustion chamber and the exhaust gases (water vapor) leave the nozzle at approximately 6,000 mph (10,000 km/h). Each engine can generate between 375,000 and 470,000 lb (1,668,083 to 2,090,664 N) of thrust; the rate of thrust can be controlled from 65 percent to 109 percent maximum thrust. The engines are mounted on gimbals (round bearings) that control the direction of the exhaust, which controls the forward direction of the rocket
External Fuel Tank
As mentioned above, the fuel for the main engines is stored in the ET. The ET is 158 ft (48 m) long and has a diameter of 27.6 ft (8.4 m). When empty, the ET weighs 78,000 lb (35,455 kg). It holds about 1.6 million lb (719,000 kg) of propellant with a total volume of about 526,000 gallons (2 million liters).
As mentioned above, the fuel for the main engines is stored in the ET. The ET is 158 ft (48 m) long and has a diameter of 27.6 ft (8.4 m). When empty, the ET weighs 78,000 lb (35,455 kg). It holds about 1.6 million lb (719,000 kg) of propellant with a total volume of about 526,000 gallons (2 million liters).
The ET is made of aluminum and aluminum composite materials. It has two separate tanks inside, the forward tank for oxygen and the aft tank for hydrogen, separated by an intertank region. Each tank has baffles to dampen the motion of fluid inside. Fluid flows from each tank through a 17-inch (43 cm) diameter feed line out of the ET through an umbilical line into the shuttle's main engines. Through these lines, oxygen can flow at a maximum rate of 17,600 gallons/min (66,600 l/min) and hydrogen can flow at a maximum rate of 47,400 gallons/min (179,000 l/min).
The ET is covered with a 1-inch (2.5 cm) thick layer of spray-on, polyisocyanurate foam insulation. The insulation keeps the fuels cold, protects the fuel from heat that builds up on the ET skin in flight, and minimizes ice formation. When Columbia launched in 2003, pieces of the insulating foam broke off the ET and damaged the left wing of the orbiter, which ultimately caused Columbia to break up upon re-entry.
Next, we'll look at the orbital maneuvering system and liftoff.
The OMS engines burn monomethyl hydrazine fuel (CH3NHNH2) and nitrogen tetroxide oxidizer (N2O4). Interestingly, when these two substances come in contact, they ignite and burn automatically (i.e., no spark required) in the absence of oxygen. The fuel and oxidizer are kept in separate tanks, each pressurized by helium. The helium pushes the fluids through the fuel lines (i.e., no mechanical pump required). In each fuel line, there are two spring-loaded solenoid valves that close the lines. Pressurized nitrogen gas, from a small tank located near the engine, opens the valves and allows the fuel and oxidizer to flow into the combustion chamber of the engine. When the engines shut off, the nitrogen goes from the valves into the fuel lines momentarily to flush the lines of any remaining fuel and oxidizer; this purge of the line prevents any unwanted explosions. During a single flight, there is enough nitrogen to open the valves and purge the lines 10 times! Either one or both of the OMS engines can fire, depending upon the orbital maneuver. Each OMS engine can produce 6,000 lb (26,400 N) of thrust. The OMS engines together can accelerate the shuttle by 2 ft/s2 (0.6 m/s2). This acceleration can change the shuttle's velocity by as much as 1,000 ft/s (305 m/s). To place into orbit or to de-orbit takes about 100-500 ft/s (31-153 m/s) change in velocity. Orbital adjustments take about 2 ft/s (0.61 m/s) change in velocity. The engines can start and stop 1,000 times and have a total of 15 h burn time.
Now let's put these pieces together to lift off!
As the shuttle rests on the pad fully fueled, it weighs about 4.5 million pounds or 2 million kg. The shuttle rests on the SRBs as pre-launch and final launch preparations are going on through T minus 31 seconds:
- T minus 31 s - the on-board computers take over the launch sequence.
- T minus 6.6 s - the shuttle's main engines ignite one at a time (0.12 s apart). The engines build up to more than 90 percent of their maximum thrust.
- T minus 3 s - shuttle main engines are in lift-off position.
- T minus 0 s -the SRBs are ignited and the shuttle lifts off the pad.
- T plus 20 s - the shuttle rolls right (180 degree roll, 78 degree pitch).
- T plus 60 s - shuttle engines are at maximum throttle.
- T plus 2 min - SRBs separate from the orbiter and fuel tank at an altitude of 28 miles (45 km). Main engines continue firing.
- Parachutes deploy from the SRBs.
- SRBs will land in the ocean about 140 miles (225 km) off the coast of Florida.
- Ships will recover the SRBs and tow them back to Cape Canaveral for processing and re-use.
- T plus 7.7 min - main engines throttled down to keep acceleration below 3g's so that the shuttle does not break apart.
- T plus 8.5 min - main engines shut down.
- T plus 9 min - ET separates from the orbiter. The ET will burn up upon re-entry.
- T plus 10.5 min - OMS engines fire to place you in a low orbit.
- T plus 45 min - OMS engines fire again to place you in a higher, circular orbit (about 250 miles/400 km).
You are now in outer space and ready to continue your mission.
Now, let's look at where and how you will be living while you are in space.
The Space Shuttle in Orbit
Orbiter
Once in space, the shuttle orbiter is your home for seven to 14 days. The orbiter can be oriented so that the cargo bay doors face toward the Earth or away from the Earth depending upon the mission objectives; in fact, the orientation can be changed throughout the mission. One of the first things that the commander will do is to open the cargo bay doors to cool the orbiter.
Once in space, the shuttle orbiter is your home for seven to 14 days. The orbiter can be oriented so that the cargo bay doors face toward the Earth or away from the Earth depending upon the mission objectives; in fact, the orientation can be changed throughout the mission. One of the first things that the commander will do is to open the cargo bay doors to cool the orbiter.
Mouse over the menu to see details.
The orbiter consists of the following parts:
- crew compartment - where you will live and work
- forward fuselage (upper, lower parts) - contains support equipment (fuel cells, gas tanks) for crew compartment
- forward reaction control system (RCS) module - contains forward rocket jets for turning the orbiter in various directions
- movable airlock - used for spacewalks and can be placed inside the crew compartment or inside the cargo bay
- mid-fuselage
- contains essential parts (gas tanks, wiring, etc.) to connect the crew compartment with the aft engines
- forms the floor of the cargo bay
- cargo bay doors - roof of the cargo bay and essential for cooling the orbiter
- remote manipulator arm - located in the cargo bay
- moves large pieces of equipment in and out of the cargo bay
- platform for spacewalking astronauts
- aft fuselage - contains the main engines
- OMS/RCS pods (2) - contain the orbital maneuvering engines and the aft RCS module; turn the orbiter and change orbits
- airplane parts of the orbiter - fly the shuttle upon landing
- wings
- tail
- body flap
You will live in the crew compartment, which is located in the forward fuselage. The crew compartment has 2,325 cu.ft of space with the airlock inside or 2,625 cu.ft with the airlock outside.
The Shuttle's Return to Earth
For a successful return to Earth and landing, dozens of things have to go just right.
First, the orbiter must be maneuvered into the proper position. This is crucial to a safe landing.
When a mission is finished and the shuttle is halfway around the world from the landing site (Kennedy Space Center, Edwards Air Force Base), mission control gives the command to come home, which prompts the crew to:
- Close the cargo bay doors. In most cases, they have been flying nose-first and upside down, so they then fire the RCS thrusters to turn the orbiter tail first.
- Once the orbiter is tail first, the crew fires the OMS engines to slow the orbiter down and fall back to Earth; it will take about 25 minutes before the shuttle reaches the upper atmosphere.
- During that time, the crew fires the RCS thrusters to pitch the orbiter over so that the bottom of the orbiter faces the atmosphere (about 40 degrees) and they are moving nose first again.
- Finally, they burn leftover fuel from the forward RCS as a safety precaution because this area encounters the highest heat of re-entry.
Columbia's Accident
On the morning of February 1st, 2003, the space shuttle Columbia broke up during re-entry, more than 200,000 feet above Texas. The subsequent investigation revealed the cause of the accident. During lift-off, pieces of foam insulation fell off the ET and struck the left wing. The insulation damaged the heat protection tiles on the wing. When Columbia re-entered the atmosphere, hot gases entered the wing through the damaged area and melted the airframe. The shuttle lost control and broke up.
|
Because it is moving at about 17,000 mph (28,000 km/h), the orbiter hits air molecules and builds up heat from friction (approximately 3000 degrees F, or 1650 degrees C). The orbiter is covered with ceramic insulating materials designed to protect it from this heat. The materials include:
- Reinforced carbon-carbon (RCC) on the wing surfaces and underside
- High-temperature black surface insulation tiles on the upper forward fuselage and around the windows
- White Nomex blankets on the upper payload bay doors, portions of the upper wing and mid/aft fuselage
- Low-temperature white surface tiles on the remaining areas
Maneuvering of the orbiter for re-entry
These materials are designed to absorb large quantities of heat without increasing their temperature very much. In other words, they have a high heat capacity. During re-entry, the aft steering jets help to keep the orbiter at its 40 degree attitude. The hot ionized gases of the atmosphere that surround the orbiter prevent radio communication with the ground for about 12 minutes (i.e., ionization blackout).
Photo courtesy NASA Artist's concept of a shuttle re-entry |
When re-entry is successful, the orbiter encounters the main air of the atmosphere and is able to fly like an airplane. The orbiter is designed from a lifting body design with swept back "delta" wings. With this design, the orbiter can generate lift with a small wing area. At this point, flight computers fly the orbiter. The orbiter makes a series of S-shaped, banking turns to slow its descent speed as it begins its final approach to the runway. The commander picks up a radio beacon from the runway (Tactical Air Navigation System) when the orbiter is about 140 miles (225 km) away from the landing site and 150,000 feet (45,700 m) high. At 25 miles (40 km) out, the shuttle's landing computers give up control to the commander. The commander flies the shuttle around an imaginary cylinder (18,000 feet or 5,500 m in diameter) to line the orbiter up with the runway and drop the altitude. During the final approach, the commander steepens the angle of descent to minus 20 degrees (almost seven times steeper than the descent of a commercial airliner).
Shuttle flight path for landing
When the orbiter is 2,000 ft (610 m) above the ground, the commander pulls up the nose to slow the rate of descent. The pilot deploys the landing gear and the orbiter touches down. The commander brakes the orbiter and the speed brake on the vertical tail opens up. A parachute is deployed from the back to help stop the orbiter. The parachute and the speed brake on the tail increase the drag on the orbiter. The orbiter stops about midway to three-quarters of the way down the runway.
When the orbiter is 2,000 ft (610 m) above the ground, the commander pulls up the nose to slow the rate of descent. The pilot deploys the landing gear and the orbiter touches down. The commander brakes the orbiter and the speed brake on the vertical tail opens up. A parachute is deployed from the back to help stop the orbiter. The parachute and the speed brake on the tail increase the drag on the orbiter. The orbiter stops about midway to three-quarters of the way down the runway.
Photo courtesy NASA Space shuttle orbiter touching down |
After landing, the crew goes through the shutdown procedures to power down the spacecraft. This process takes about 20 minutes. During this time, the orbiter is cooling and noxious gases, which were made during the heat of re-entry, blow away. Once the orbiter is powered down, the crew exits the vehicle. Ground crews are on-hand to begin servicing the orbiter.
Photo courtesy NASA Parachute deployed to help stop the orbiter on landing |
Photo courtesy NASA Orbiter being serviced just after landing |
The shuttle's technology is constantly being updated. Next, we'll look at future improvements to the shuttle.
Cut-away drawing of the orbiter's crew compartment |
The crew compartment has three decks:
- flight deck - uppermost deck
- forward deck - contains all of the controls and warning systems for the space shuttle (also known as the cockpit)
- seats - commander, pilot, specialist seats (two)
- aft deck - contains controls for orbital operations
- maneuvering the orbiter while in orbit (rendezvous, docking)
- deploying payloads
- working the remote manipulator arm
- mid-deck
- living quarters (galley, sleeping bunks, toilet)
- stowage compartments (personal gear, mission-essential equipment, experiments)
- exercise equipment
- airlock - on some flights
- entry hatch
- lower deck (equipment bay) - contains life support equipment, electrical systems, etc.
Now that you have seen the parts of the orbiter, let's look closely at how the orbiter lets you live in space.
Living Environment
The shuttle orbiter provides an environment where you can live and work in space.
The shuttle orbiter provides an environment where you can live and work in space.
Photo courtesy NASA Space shuttle Endeavour (STS113) in orbit as seen from the International Space Station. |
It must be able to do the following:
- provide life support - everything the Earth does for us
- atmosphere control, supply and recycling
- water
- temperature control
- light
- food supply
- waste removal
- fire protection
- change position and change orbits
- let you talk with ground-based flight controllers (communications and tracking)
- find its way around (navigation)
- make electrical power
- coordinate and handle information (computers)
- enable you to do useful work
- launch/retrieve satellites
- construction - such as building the International Space Station
- conduct experiments
Now let's look at the orbiter's systems and how it achieves these functions.
Space Shuttle Improvements
As mentioned previously, falling debris (foam insulation) from the ET damaged the shuttle orbiter, leading to Columbia's break up upon re-entry. To bring the shuttles back to flight status, NASA has focused on three major areas:
- Redesign the ET to prevent insulation from damaging the shuttle orbiter
- Improve inspection of the shuttle to detect damage
- Find ways to repair possible damage to the orbiter while in orbit
- Formulate contingency plans for the crew of a damaged shuttle to stay at the ISS until rescue
Let's take a closer look at each of these.
ET Redesign
The ET holds cold liquefied gases as fuel (oxygen, hydrogen). Because the temperatures are so cold, water from the atmosphere condenses and freezes on the surfaces of the ET and the fuel lines leading in to the orbiter. Ice can fall off the ET itself or cause the ET foam insulation to crack and fall off. In addition to ice, if any of the liquid gas were to leak and get under the foam, it would expand and cause the foam insulation to crack. So much of the ET redesign has focused on eliminating places where condensation can occur.
The ET holds cold liquefied gases as fuel (oxygen, hydrogen). Because the temperatures are so cold, water from the atmosphere condenses and freezes on the surfaces of the ET and the fuel lines leading in to the orbiter. Ice can fall off the ET itself or cause the ET foam insulation to crack and fall off. In addition to ice, if any of the liquid gas were to leak and get under the foam, it would expand and cause the foam insulation to crack. So much of the ET redesign has focused on eliminating places where condensation can occur.
First, the bipod fitting is the forward point where the ET attaches to the underside of the orbiter. Engineers and technicians discovered that this point is especially susceptible to icing. In the past, ramps of foam insulation over this part prevented ice buildup; however, this insulation fell off frequently, thereby presenting a danger to the orbiter.
Photo courtesy NASA. Photo credit: Lockheed martin/NASA Michoud The foam ramps that protected ET bipod fittings from ice build up (above) have been replaced with a new joint that is electrically heated (below). |
In the redesign, the insulation has been removed and the fitting now mounts across the top of a copper plate, which contains electric heaters. The heater can warm the fitting and prevent ice buildup.
Second, liquid nitrogen is used to purge the intertank connection of any potentially explosive hydrogen gas. However, liquid nitrogen can freeze around the bolts in that area and cause foam insulation to break off. The bolts in that area have been redesigned to prevent leaks of liquid nitrogen.
Photo courtesy NASA. Photo credit: Lockheed martin/NASA Michoud The foam ramps that protected the liquid oxygen feedline bellow were angled and could permit ice build up (above). They have been replaced with a design called a drip-lip that prevents ice build up (below). |
Third, five liquid oxygen feedline bellows lie along the umbilicus that connects the liquid oxygen tank with the main engines and are attached to the liquid hydrogen tank. The bellows compensate for expansions and contractions that occur when the liquid hydrogen tank is filled and emptied. The bellows prevent stresses on the feedline. Previously, the foam insulation overlying the bellows was angled. This angle allowed water vapor to condense, run between the foam insulation, and freeze, thereby breaking the foam. To correct this problem, the foam skirt of this joint has been extended over the insulation below and squared off so that water cannot run between the foam.
Preventing Future Space Shuttle Disasters
Explosive bolts separate the SRBs from the external tank when the SRBs burn out in flight. Engineers assessed that fragments of the bolts could also damage the shuttle. They designed a bolt catcher to prevent the bolts from damaging the ET or hitting the orbiter.
Photo courtesy NASA A bolt catcher (above) was designed to prevent the explosive bolts on the SRBs (below) from damaging the ET or the orbiter. |
To detect falling debris and possible damage to the shuttle, NASA has done the following:
- One hundred and seven cameras (Infrared, High Speed Digital Video, HDTV, 35 mm, 16 mm) have been placed on and around the launch pad to film the shuttle during liftoff.
- Ten sites within 40 miles of the launch pad have been equipped with cameras to film the shuttle during ascent.
- On days of heavier cloud cover when ground cameras will be obscured, two WB-57 aircraft will film the shuttle from high altitude as it ascends.
- Three radar tracking facilities (one with C-band and two with Doppler radar) will monitor the shuttle to detect debris.
- New digital video cameras have been installed on the ET to monitor the underside of the orbiter and relay the data to the ground through antennae installed in the ET.
- Cameras have been installed on the SRB noses to monitor the ET.
- The shuttle crew has new handheld digital cameras to photograph the ET after separation. The images will be downloaded to laptops on the orbiter and then transmitted to the ground.
- A digital spacewalk camera will be used for astronauts to inspect the orbiter while in orbit.
- Canada made a 50-foot long extension, called the Remote Manipulator System/Orbiter Booster Sensor System (RMS/OBSS), that can be attached to the robotic arm. This extension will allow the RMS to reach the underside of the orbiter. Cameras mounted on this extension will photograph the underside for damage.
Photo courtesy NASA The RMS/OBSS will allow astronauts to inspect the underside and leading edge of the wings for damage. |
Finally, engineers and technicians have installed 66 tiny accelerometers and 22 temperature sensors in the leading edge of both wings on the orbiter. The devices will detect the impact of any debris hitting the orbiter's wings.
The entire purpose of the imaging and wing sensors is to detect possible damage from falling debris. Engineers and administrators can analyze these images and make recommendations to the crew during the mission.
NASA also formulated ideas on how to repair damaged shuttles while in flight, including:
- Applying pre-ceramic polymers to small cracks
- Using small mechanical plugs made of carbon-silicone carbides to repair damage up to 6 inches in diameter
These ideas were tested aboard the shuttle Discovery in June 2005.
History of the Space Shuttle
Near the end of the Apollo space program, NASA officials were looking at the future of the American space program. They were using one-shot, disposable rockets. What they needed was a reliable, less expensive rocket, perhaps one that was reusable. The idea of a reusable "space shuttle" that could launch like a rocket but land like an airplane was appealing and would be a great technical achievement.
NASA began design, cost and engineering studies on a space shuttle and many aerospace companies also explored the concepts. In 1972, President Nixon announced that NASA would develop a reusable space shuttle or space transportation system (STS). NASA decided that the shuttle would consist of an orbiter attached to solid rocket boosters and an external fuel tank and awarded the prime contract to Rockwell International.
At that time, spacecraft used ablative heat shields that would burn away as the spacecraft re-entered the Earth's atmosphere. However, to be reusable, a different strategy would have to be used. The designers of the space shuttle came up with an idea to cover the space shuttle with many insulating ceramic tiles that could absorb the heat of re-entry without harming the astronauts.
Photo courtesy NASA The Enterprise separates from a Boeing 747 to begin one of its flight and landing tests |
Remember that the shuttle was to fly like a plane, more like a glider, when it landed. A working orbiter was built to test the aerodynamic design, but not to go into outer space. The orbiter was called the Enterprise after the "Star Trek" starship. The Enterprise flew numerous flight and landing tests, where it was launched from a Boeing 747 and glided to a landing at Edwards Air Force Base in California.
Enterprise
Enterprise is now on display at the National Air & Space Museum's Steven F. Udvar-Hazy Center near Dulles International Airport in Washington, DC.
|
Finally, after many years of construction and testing (i.e. orbiter, main engines, external fuel tank, solid rocket boosters), the shuttle was ready to fly. Four shuttles were made (Columbia, Discovery, Atlantis, Challenger). The first flight was in 1981 with the space shuttle Columbia, piloted by astronauts John Young and Robert Crippen. Columbia performed well and the other shuttles soon made several successful flights.
In 1986, the shuttle Challenger exploded in flight and the entire crew was lost. NASA suspended the shuttle program for several years, while the reasons for the disaster were investigated and corrected. After several years, the space shuttle flew again and a new shuttle, Endeavour, was built to replace Challenger in the shuttle fleet.
In 2003, while re-entering the Earth's atmosphere, the shuttle Columbia broke up over the United States. NASA grounded the space shuttle program after the accident and worked feverishly to make changes and return the shuttles to flight. In 2006, the shuttle Discovery lost foam from its external fuel tank. Once again, the program was grounded and scientists struggled to solve the problem. The Discovery launched twice in 2006, once in July and again in December. According to NASA, the July 2006 launch was the most photographed shuttle mission in history. The Atlantis launched in September 2006, after delays due to weather, a problem with the fuel cell and a faulty sensor reading.
While the space shuttles are a great technological advance, they are limited as to how much payload they can take into orbit. The shuttles are not the heavy lift vehicles like the Saturn V or the Delta rockets. The shuttle cannot go to high altitude orbits or escape the Earth's gravitational field to travel to the Moon or Mars. NASA is currently exploring new concepts for launch vehicles that are capable of going to the Moon and Mars.
For more information on space shuttles and related topics, check out the links on the following page
No comments:
Post a Comment